Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Characterizing the relative onset time, strength, and duration of molecular signals is critical for understanding the operation of signal transduction and genetic regulatory networks. However, detecting multiple such molecules as they are produced and then quickly consumed is challenging. A MER can encode information about transient molecular events as stable DNA sequences and are amenable to downstream sequencing or other analysis. Here, we report the development of a de novo molecular event recorder that processes information using a strand displacement reaction network and encodes the information using the primer exchange reaction, which can be decoded and quantified by DNA sequencing. The event recorder was able to classify the order at which different molecular signals appeared in time with 88% accuracy, the concentrations with 100% accuracy, and the duration with 75% accuracy. This simultaneous and highly programmable multiparameter recording could enable the large-scale deciphering of molecular events such as within dynamic reaction environments, living cells, or tissues.more » « less
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            null (Ed.)We study fair content allocation strategies in caching networks through a utility-driven framework, where each request achieves a utility of its caching gain rate. The resulting problem is NP-hard. Submodularity allows us to devise a deterministic allocation strategy with an optimality guarantee factor arbitrarily close to 1-1/e. When 0 < α ≤ 1, we further propose a randomized strategy that attains an improved optimality guarantee, (1 - 1/e)1-α, in expectation. Through extensive simulations over synthetic and real-world network topologies, we evaluate the performance of our proposed strategies and discuss the effect of fairness.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
